пятница, 5 октября 2012 г.

Цепная дробь из корня

Способ разложения числа в цепную дробь с помощью калькулятора имеет ограничения точности. Но, оказывается, для квадратных корней существует способ получения цепной дроби любой длины, требующий лишь ручки и бумаги. Разложим с его помощью корень из 503, который нам был нужен для решения уравнения Пелля.

 Для начала выделим в корне целую часть. Так как 222 = 484, а 232 = 529, то
разложение корня в цепную дробь

 Итак, искомое разложение начнётся как [22, ....]

 Превратим дробную часть в дробь с числителем 1:
  разложение корня в цепную дробь

 Избавимся от иррациональности в знаменателе дроби, воспользовавшись тем, что:
разложение корня в цепную дробь

 Получим:
разложение корня в цепную дробь

 Теперь выделим у дроби целую часть:
  разложение корня в цепную дробь

 Получили второй член разложения: [22, 2, ....] А в целом цепная дробь сейчас выглядит так:
 разложение корня в цепную дробь

Перевернём теперь дробную часть ещё раз:
разложение корня в цепную дробь

 Внимание! Здесь начинается особая математическая магия! Дело в том, что знаменатель обязательно должен разделиться на целый множитель числителя. Очень рекомендую это доказать - удовольствие гарантировано.

 Действительно, здесь тоже имеем:
  разложение корня в цепную дробь

 И выделение целой части даёт нам новый член разложения: [22, 2, 2, ....]

 Вот новое звено цепной дроби:
  разложение корня в цепную дробь 

Данный процесс можно продолжать. Когда получим на каком-либо шаге дробь, которая получалась ранее (а мы обязательно получим такую, это тоже можно доказать), соответствующий участок разложения зациклится.

 Вот так можно получить цепную дробь любого корня без каких-либо электронных вычислительных средств. А вообще, самый простой способ - это вбить в ВольфрамАльфе: continued fraction, а затем в новом открывшемся окошке написать sqrt(503)

Комментариев нет:

Отправить комментарий

Популярные сообщения