вторник, 23 октября 2012 г.

Переставляем цифры и складываем

Возьмём некоторое натуральное число. Переставим как-нибудь его цифры и прибавим новое число к исходному. Какой минимальный результат может получиться, если сделать несколько таких шагов?

Например, если начать с единицы, то наименьшим числом, которое можно получить за 10 шагов, будет число 466.



Всё вполне интуитивно: переставляем цифры в восходящем порядке, чтобы каждое сложение  как можно меньше увеличивало результат. Однако если найти наименьшее число, которое можно получить за 11 шагов, им окажется не 932 = 466 + 466, а 896, находящееся в совершенно иной ветке:


Как видите, во второй ветви четырежды цифры сортировались не в строго возрастающем порядке, что позволило получить два числа с нулями. Эти нули, будучи выведенными вперёд в слагаемых, помогли сократить конечный результат.

А теперь вопрос. Какое наибольшее число шагов можно успеть сделать, пока число не станет пятизначным?

Комментариев нет:

Отправить комментарий

Популярные сообщения

Темы

число цифра простые геометрия юмор язык дроби степень делимость пи методы история самоописывающее квадрат система счисления время узор задача корень структура тригонометрия е конструкция сайты формулы игра факториал функции приближение программа фрактал последовательность график комбинаторика память вероятность пределы конкурс логарифм треугольник неизвестное интеграл уравнение видео комплексные магический квадрат палиндром правильно-неправильное действие софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы проценты логика парабола разрезания символ 2014 Фибоначчи клеточный автомат матрица производная статистика фокус головоломка кривая куб шахматы действия иллюзия новости оказывается оригами построение сложение термин тетраэдр