Разложение числа
2014 на простые множители поможет ответить и на вопрос, сколькими способами
аликвотную дробь $\frac{1}{2014}$ можно представить в виде суммы или разности двух аликвотных дробей.
Составим диофантово уравнение:
$\frac{1}{x}-\frac{1}{y}=\frac{1}{2014}$
$\frac{y-x}{xy}=\frac{1}{2014}$
2014y - 2014x = xy
(2014-x)y = 2014x
$y = \frac{2014 x}{2014-x}$
Так как слева - натуральное число, то и справа число должно быть натуральным. Во-первых, такое возможно, если разность 2014 - х окажется равным одному из делителей числа 2014: 1, 2, 19, 38, 53, 106 или 1007. Это даёт пары решений (х,у):
(2013,4054182);
(2012,2026084);
(1995,211470);
(1976,104728);
(1961,74518);
(1908,36252);
(1007,2014).
Однако, все ли это решения? Нет, ведь, например, при x = 2010 знаменатель дроби $y = \frac{2014 x}{2014-x}$ тоже сократится полностью. Так как же найти, сколькими способами можно представить дробь $\frac{1}{2014}$ в виде разности двух аликвотных дробей, не прибегая к полному перебору?
Для этого введём замену d = 2014 - x. Тогда выражение для y обретёт вид:
$y = \frac{2014 (2014-d)}{d}=\frac{2014^2-2014d}{d}=\frac{2014^2}{d}-2014$
Таким образом, число d должно быть делителем числа $2014^2$ и быть меньше числа 2014. Всего для него 13 вариантов:
1, 2, 4, 19, 38, 53, 76, 106, 212, 361, 722, 1007, 1444
Что даёт следующие равенства:
$\frac{1}{2014}=\frac{1}{2013}-\frac{1}{4054182}=\frac{1}{2012}-\frac{1}{2026084}= \frac{1}{2010}-\frac{1}{1012035}=\\
=\frac{1}{1995}-\frac{1}{211470}=\frac{1}{1976}-\frac{1}{104728}=\frac{1}{1961}-\frac{1}{74518}=\\
=\frac{1}{1938}-\frac{1}{51357}=\frac{1}{1908}-\frac{1}{36252}=\frac{1}{1802}-\frac{1}{17119}=\\
=\frac{1}{1653}-\frac{1}{9222}=\frac{1}{1292}-\frac{1}{3604}=\frac{1}{1007}-\frac{1}{2014}=\frac{1}{570}-\frac{1}{795}$
А найти, сколькими способами число $\frac{1}{2014}$ представляется в виде суммы аликвотных дробей предлагаем вам самостоятельно. Будет хорошая тренировка перед математическими олимпиадами этого года.