вторник, 14 июля 2015 г.

Сумма всех натуральных чисел

Для числа 12 на математических часах я выбрал одну их наиболее парадоксальных формул, согласно которой сумма всего бесконечного множества натуральных чисел равна конкретному (!) дробному (!) отрицательному (!) числу.

А именно, $\sum\limits_{n=1}^{\infty}n = -\frac{1}{12}$

Чтобы разобраться, как такое может быть, начнём с ряда 1-1+1-1+1-1+1-1+......
Так как его сумма не стремится к какой-либо определённой величине, а принимает поочерёдно два различных значения: 1 или 0, он считается расходящимся.

Однако можно расширить понятие суммирования рядов и на расходящиеся, для начала приняв:
S = 1-1+1-1+1-1+1-1+...
Тогда этот же ряд можно записать как:
1-(1-1+1-1+1-1+1-1+... = 1-S

Имеем уравнение:
S = 1-S
S = 0,5

Теперь возьмём этот ряд и возведём его в квадрат. При умножении рядов (a1+a2+a3+a4+...) на (b1+b2+b3+b4+...) получается ряд
(a1b1)+(a1b2+a2b1)+(a1b3+a2b2+a3b1)+(a1b4+a2b3+a3b2+a4b1), в котором в один член группируются произведения тех елементов рядов-множителей, для которых сумма индексов постоянна.

Получается, что (1-1+1-1+1-1+1-1+...)*(1-1+1-1+1-1+1-1+...) = 1+(1*(-1)+(-1)*1)+(1*1+(-1)*(-1)+1*1)+(1*(-1)+(-1)*1+1*(-1)+(-1)*1)+... = 1-2+3-4+5-6+7-...

Таки образом, сумма натурального знакопеременного ряда 1-2+3-4+5-6+7-... равна 0,52 = 0,25

Теперь сделаем ещё один шаг. Какой ряд надо прибавить к натуральному знакопеременному ряду, чтобы получить натуральный?

1-2+3-4+5-6+7-8+...
+
0+4+0+8+0+12+0+16+...
__________________
1+2+3+4+5+6+7+8+...

Но прибавляемый ряд равен учетверённому натуральному ряду:
0+4+0+8+0+12+0+16+... = 4(1+2+3+4+...)

Значит, 1-2+3-4+5-6+7-8+... = 1+2+3+4+... -4(1+2+3+4+...)= -3(1+2+3+4+...)
-3(1+2+3+4+...)=0,25
Откуда
$1+2+3+4+5+6+7+8+\dots=-\frac{1}{12}$

Впервые этот результат был получен Рамануджаном. И это не результат софизма и не пустое развлечение. Как оказалось, величина $-\frac{1}{12}$ для суммы всех натуральных чисел сейчас находит применение в квантовой механике.

4 комментария:

  1. Это серьёзно не шутка? Как же быть с тем, что сумма положительных чисел может быть только положительной, а сумма целых только целой?

    ОтветитьУдалить
    Ответы
    1. Нет-нет, серьёзно. Как именно применяется в теории струн этот результат я не углублялся, но в математике существует развитая теория суммирования расходящихся рядов (прямо по К.Х.Хунте: "Что толку решать задачу, когда решение есть? Вот если решения нет - тогда стоит думать, как её решать!")

      Удалить
  2. Анонимный10/8/15 15:50

    Этот результат был получен до Рамануджана, Эйлером.

    Чтобы не путаться, лучше не называть это суммой, а, например "суммой во обобщенном смысле" (иногда называют суммой Рамануджана). Такая сумма в обобщенном смысле, это сопоставление бесконечному расходящемуся (в обычном смысле) ряду, конечного числа, которое (сопоставление), в некоторых задачах (как, например, уже было сказано, в физике) имеет определенный смысл, ибо манипулировать с бесконечностями в физике трудно.

    ОтветитьУдалить
    Ответы
    1. Спасибо за хорошее пояснение!

      Удалить

Популярные сообщения

Темы

число цифра простые геометрия юмор язык дроби степень делимость пи методы история самоописывающее квадрат система счисления время задача узор корень структура тригонометрия е сайты конструкция формулы игра факториал функции приближение программа фрактал последовательность график комбинаторика память вероятность пределы конкурс логарифм треугольник неизвестное интеграл магический квадрат палиндром уравнение видео комплексные правильно-неправильное действие софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы проценты логика парабола разрезания символ 2014 Фибоначчи клеточный автомат матрица производная статистика фокус головоломка кривая куб шахматы действия иллюзия новости оказывается оригами построение сложение термин тетраэдр