пятница, 20 декабря 2013 г.

Простые числа и разность квадратов

Пора бы уже, по традиции, собирать интересные факты о номере наступающего года: 2014.
Начнём с того, что это число раскладывается на простые множители так:

$2014=2\times 19\times 53$

Обычно сразу после этого факта я пишу, сколькими способами его можно представить в виде разности квадратов, но сейчас хочу пояснить подробнее, какая связь между этими способами и простыми множителями числа.

Итак, пусть для некоторых натуральных х и у:
$x^2-y^2=2014$

Левая часть раскладывается на множители по формуле разности квадратов:
(x-y)(x+y) = 2014

Заметим, что выражения х-у и х+у, как сумма и разность двух натуральных чисел, имеют одинаковую чётность. Поэтому, чтобы найти все возможные решения, попробуем число 2014 представить в виде произведения двух натуральных чисел одинаковой чётности.

А вот это как раз невозможно. Ведь среди простых делителей числа 2014 только одна двойка, и, как бы мы ни группировали их в два множителя, один будет чётным, другой - нечётным.

Комментариев нет:

Отправить комментарий

Популярные сообщения

Темы

число цифра простые геометрия юмор дроби язык степень делимость пи методы история квадрат самоописывающее время задача система счисления узор корень тригонометрия структура е сайты конструкция формулы игра факториал функции приближение программа фрактал комбинаторика последовательность график память логарифм вероятность палиндром пределы конкурс треугольник магический квадрат неизвестное правильно-неправильное действие видео интеграл уравнение комплексные софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы матрица проценты разрезания логика парабола символ статистика 2014 Фибоначчи клеточный автомат кривая производная фокус головоломка действия иллюзия куб шахматы многоугольник новости оказывается оригами подобие построение сложение термин тетраэдр топология