среда, 12 ноября 2014 г.

Объяснение математических часов: 5 - золотое сечение

На математических часах в двух формулах встречается буква фи ($\phi$) однако, она имеет разный смысл. Чётвёрка на часах задаётся через функцию Эйлера, а пятёрка - через константу Золотого сечения:

$5=(2\phi-1)^2$

5 - Золотое сечение
Золотое сечение возникает из следующей задачи. Единичный отрезок нужно разделить на 2 части так, чтобы большая часть относилась к меньшей как весь отрезок относится к его большей части.
Золотое сечение
Составим пропорцию:
$\frac{1-x}{x}=\frac{x}{1}$

Откуда получаем квадратное уравнение:
$x^2-x-1 = 0$

Его положительным корнем будет:
$x=\frac{1+\sqrt{5}}{2}$

Это число обозначается как $\phi\approx 1,618$

У него много интересных свойств. Например, если число фи увеличить на единицу, получим его квадрат. А если уменьшим на единицу - получим обратную величину, $\frac{1}{\phi}$

Число фи всплывает и при вычислении бесконечных цепных дробей или вложенных корней. Забавно, что собственно о числах Фибоначчи и порождающей их формуле я в блоге до сих пор не писал - постараюсь это исправить :)



Комментариев нет:

Отправить комментарий

Популярные сообщения

Темы

число цифра простые геометрия юмор язык дроби степень делимость пи методы история самоописывающее квадрат система счисления время узор задача корень структура тригонометрия е конструкция сайты формулы игра факториал функции приближение программа фрактал последовательность график комбинаторика память вероятность пределы конкурс логарифм треугольник неизвестное интеграл уравнение видео комплексные магический квадрат палиндром правильно-неправильное действие софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы проценты логика парабола разрезания символ 2014 Фибоначчи клеточный автомат матрица производная статистика фокус головоломка кривая куб шахматы действия иллюзия новости оказывается оригами построение сложение термин тетраэдр