воскресенье, 26 июля 2015 г.

Простой признак делимости на 7

При изучении признаков делимости в 6 классе, признак делимости на 7 часто пропускают или объединяют вместе с признаками делимости на 11 и 13 в признак делимости на 1001.

В одной табличке признаков делимости мне даже попалась фраза: "простого признака делимости на 7 нет". А он есть! :)

Оказывается, чтобы проверить, делится ли число на 7, надо у него отбросить последнюю цифру и от оставшегося числа эту отброшенную цифру дважды вычесть. Если полученный результат делится на 7, то и число делится на 7.

Это действие можно проводить несколько раз, пока явно не увидим делимость или её отсутствие.

Возьмём число 39312
Отбрасываем последнюю двойку и дважды её отнимаем:
3931-2-2 = 3927
Отбрасываем последнюю семёрку и дважды её отнимаем:
392-7-7 = 378
Отбрасываем последнюю восьмёрку и дважды её отнимаем:
37-8-8 = 21

21 делится на 7, значит и 39312 делится на 7.

Кстати, этот метод можно ещё чуть-чуть усовершенствовать. Подумайте, как.

Ещё больше признаков делимости в статье на Эвольвенте: "Интересные признаки делимости, о которых обычно не рассказывают в 6 классе"

Комментариев нет:

Отправить комментарий

Популярные сообщения

Темы

число цифра простые геометрия юмор дроби язык степень делимость пи методы история квадрат самоописывающее время задача система счисления узор корень тригонометрия структура е сайты конструкция формулы игра факториал функции приближение программа фрактал комбинаторика последовательность график память логарифм вероятность палиндром пределы конкурс треугольник магический квадрат неизвестное правильно-неправильное действие видео интеграл уравнение комплексные софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы матрица проценты разрезания логика парабола символ статистика 2014 Фибоначчи клеточный автомат кривая производная фокус головоломка действия иллюзия куб шахматы многоугольник новости оказывается оригами подобие построение сложение термин тетраэдр топология