Векторы можно складывать, вычитать, умножать на число. А перемножать векторы между собой можно даже двумя способами: скалярно и векторно.
Результатом скалярного произведения является число, а порядок множителей неважен. Результатом же векторного произведения является вектор, напрваление которого зависит от того, в каком порядке перемножались сомножители.
Скалярное произведение обозначается точкой, а векторное - крестиком.
Скалярное произведение вычисляется просто: нужно попарно перемножить соответстсвующие координаты векторов, а результаты сложить.
Таким образом, на математических часах запись $\overline{(2,5)}\cdot\overline{(3,1)}$ обозначает $2\cdot 3+5\cdot 1=11$
Геометрически скалярное произвдение вектора равно произведению длин векторов на косинус угла между ними.
Интересные числа, занимательные математические факты и удивительные конструкции. Узнавайте каждый день что-то новое!
воскресенье, 21 июня 2015 г.
суббота, 20 июня 2015 г.
Вычисление количества сочетаний
Число 10 на математических часах представляется как
$10=C_5^2$
Эта запись означает количество сочетаний из 5 элементов по 2. Иными словами, сколькими способами можно выбрать из пяти различных предметов неупорядоченную пару
Искомое число можно подсчитать непосредственно. Из (1,2,3,4,5) можно выбрать такие пары (не забываем, что порядок в них неважен):
(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)
Всего их 10.
Как же вычислять $C_n^m$ не прибегая к непосредственному перечислению? Первый предмет можно выбрать n способами. Второй предмет можно выбрать (n-1) способами. Для третьего будет (n-2) способов, и т.д. до (n-m+1) способов выбрать m-й предмет.
Значит, количество способов выбрать m предметов из n при условии, что порядок важен, равно произведению $n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1)$.
Сами же эти m предметов можно переставить между собой m! способами. Значит, каждая непорядоченная группа из m предметов при нашем подсчёте оказалась подсчитанной m! раз.
Поэтому $C_n^m$ оказывается равно дроби: $\frac{n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1)}{m!}$
Эту формулу можно упростить, заметив, что $n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1) = \frac{n!}{(n-m)!}$
Таким образом, $C_n^m = \frac{n!}{m!(n-m)!}$
$10=C_5^2$
Эта запись означает количество сочетаний из 5 элементов по 2. Иными словами, сколькими способами можно выбрать из пяти различных предметов неупорядоченную пару
Искомое число можно подсчитать непосредственно. Из (1,2,3,4,5) можно выбрать такие пары (не забываем, что порядок в них неважен):
(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)
Всего их 10.
Как же вычислять $C_n^m$ не прибегая к непосредственному перечислению? Первый предмет можно выбрать n способами. Второй предмет можно выбрать (n-1) способами. Для третьего будет (n-2) способов, и т.д. до (n-m+1) способов выбрать m-й предмет.
Значит, количество способов выбрать m предметов из n при условии, что порядок важен, равно произведению $n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1)$.
Сами же эти m предметов можно переставить между собой m! способами. Значит, каждая непорядоченная группа из m предметов при нашем подсчёте оказалась подсчитанной m! раз.
Поэтому $C_n^m$ оказывается равно дроби: $\frac{n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1)}{m!}$
Эту формулу можно упростить, заметив, что $n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1) = \frac{n!}{(n-m)!}$
Таким образом, $C_n^m = \frac{n!}{m!(n-m)!}$
пятница, 19 июня 2015 г.
Вычисление предела
Как-то резко я прекратил публиковать объяснение формул со своих математических часов. Продолжаем!
Число 9 выражается как предел $\lim_{x \rightarrow \infty} \frac{(3x+1)(3x+2)}{(x+3)(x-2)}$
Предел этот представляет собой неопределённость вида бесконечность на бесконечность. При этом в числителе и знаменателе предела - многочлены.
$\lim_{x \rightarrow \infty} \frac{9x^2+9x+2}{x^2+x-6}$
Так как эти многочлены одинаковых степеней, предел будет равен отношению их старших коэффициентов. Для доказательства этого факта разделим числитель и знаменатель на $x^2$:
$\lim_{x \rightarrow \infty} \frac{\frac{9x^2+9x+2}{x^2}}{\frac{x^2+x-6}{x^2}} = \lim_{x \rightarrow \infty} \frac{\frac{9x^2}{x^2}+\frac{9x}{x^2}+\frac{2}{x^2}}{\frac{x^2}{x^2}+\frac{x}{x^2}-\frac{6}{x^2}} = \lim_{x \rightarrow \infty} \frac{9+\frac{9}{x}+\frac{2}{x^2}}{1+\frac{1}{x}-\frac{6}{x^2}}$
Поскольку х стремится к бесконечности, то все слагаемые числителя и знаменателя, кроме первых, стремятся к нулю и можно вычислить предел.
$\lim_{x \rightarrow \infty} \frac{9+\frac{9}{x}+\frac{2}{x^2}}{1+\frac{1}{x}-\frac{6}{x^2}} = \frac{9+0+0}{1+0+0}=9$
Вот, кстати, как выглядит график этой функции:
Прямая у=9 является егго горизонтальной асимптотой.
Число 9 выражается как предел $\lim_{x \rightarrow \infty} \frac{(3x+1)(3x+2)}{(x+3)(x-2)}$
Предел этот представляет собой неопределённость вида бесконечность на бесконечность. При этом в числителе и знаменателе предела - многочлены.
$\lim_{x \rightarrow \infty} \frac{9x^2+9x+2}{x^2+x-6}$
Так как эти многочлены одинаковых степеней, предел будет равен отношению их старших коэффициентов. Для доказательства этого факта разделим числитель и знаменатель на $x^2$:
$\lim_{x \rightarrow \infty} \frac{\frac{9x^2+9x+2}{x^2}}{\frac{x^2+x-6}{x^2}} = \lim_{x \rightarrow \infty} \frac{\frac{9x^2}{x^2}+\frac{9x}{x^2}+\frac{2}{x^2}}{\frac{x^2}{x^2}+\frac{x}{x^2}-\frac{6}{x^2}} = \lim_{x \rightarrow \infty} \frac{9+\frac{9}{x}+\frac{2}{x^2}}{1+\frac{1}{x}-\frac{6}{x^2}}$
Поскольку х стремится к бесконечности, то все слагаемые числителя и знаменателя, кроме первых, стремятся к нулю и можно вычислить предел.
$\lim_{x \rightarrow \infty} \frac{9+\frac{9}{x}+\frac{2}{x^2}}{1+\frac{1}{x}-\frac{6}{x^2}} = \frac{9+0+0}{1+0+0}=9$
Вот, кстати, как выглядит график этой функции:
Прямая у=9 является егго горизонтальной асимптотой.
четверг, 11 июня 2015 г.
Подписаться на:
Сообщения (Atom)
Популярные сообщения
-
Если вы хотите проверить, содержится ли ваш телефон, год рождения или номер дома среди уже вычисленных знаков числа пи, воспользуйтесь этой ...
-
Приведённые квадратные уравнения легко решать по теореме Виета. Достаточно найти два числа такие, произведение которых равно свободному член...
-
Как рассказал наш читатель в комментарии к посту о целочисленном треугольнике , площадь четырёхугольника, вписанного в окружность, вычисляе...
-
Способ разложения числа в цепную дробь с помощью калькулятора имеет ограничения точности. Но, оказывается, для квадратных корней существуе...
-
Вычислим факториалы нескольких натуральных чисел и отметим точки (1, 1), (2, 2), (3, 6), (4, 24) и т.д.на прямоугольной системе координат...
-
Многих школьников, и не только, занимает вопрос: почему умножение и деление выполняются до сложения и вычитания? В рунете на этот вопрос н...
-
Чтобы возвести в квадрат число, оканчивающееся пятёркой, нужно умножить число, полученное отбрасыванием последней пятёрки на следующее в нат...
-
Для числа 12 на математических часах я выбрал одну их наиболее парадоксальных формул, согласно которой сумма всего бесконечного множества на...
-
WolframAlpha - мощный математический онлайн-калькулятор. Быстро выполняет любые расчёты, раскладывает на множители, переводит в другие си...
-
на клетчатом листе можно легко нарисовать параболу. Для этого сначала отмечаем точку - вершину параболы. Затем ставим новые точки, двигаясь ...
Темы
число
цифра
простые
геометрия
юмор
дроби
язык
степень
делимость
пи
методы
история
квадрат
самоописывающее
время
задача
система счисления
узор
корень
тригонометрия
структура
е
сайты
конструкция
формулы
игра
факториал
функции
приближение
программа
фрактал
комбинаторика
последовательность
график
память
логарифм
вероятность
палиндром
пределы
конкурс
треугольник
магический квадрат
неизвестное
правильно-неправильное действие
видео
интеграл
уравнение
комплексные
софизм
заблуждения
процесс
ряды
цитаты
книги
окружность
прогрессия
среднее
стереометрия
число фи
выражения
графы
матрица
проценты
разрезания
логика
парабола
символ
статистика
2014
Фибоначчи
клеточный автомат
кривая
производная
фокус
головоломка
действия
иллюзия
куб
шахматы
многоугольник
новости
оказывается
оригами
подобие
построение
сложение
термин
тетраэдр
топология