Магические квадраты - такой же непременный атрибут занимательной математики, как и игры с цифрами, задачи на разрезание или числовые фокусы. А вот Наталия Макарова, пополнившая Интернет-энциклопедию целочисленных последовательностей немалым числом своих находок, рассказала мне, что сущеcтвуют также квадраты антимагические.
Строго говоря, есть несколько определений того, какой квадрат считать антимагическим. Вот антимагический квадрат Стенли - это такой квадрат размера nxn, в котором равны не суммы по всем горизонталям и вертикалям, а, наоборот, суммы любых n элементов, никакие 2 из которых не лежат в одной строке или одном столбце.
В нём:
3+13+37 = 3+19+31 = 44+19+23 = 44+5+37 = 17+13+23 = 17+5+23 = 53
В квадрате со стороной n таким сумм будет ровно n! Нелегко же, наверное, все их уравнять! Однако Наталии с коллегами удаётся не только находить такие квадраты, а и составлять их только из простых чисел и доказывать минимальность полученных сумм.
Строго говоря, есть несколько определений того, какой квадрат считать антимагическим. Вот антимагический квадрат Стенли - это такой квадрат размера nxn, в котором равны не суммы по всем горизонталям и вертикалям, а, наоборот, суммы любых n элементов, никакие 2 из которых не лежат в одной строке или одном столбце.
Пример:
3 | 44 | 17 |
5 | 13 | 19 |
23 | 31 | 37 |
В нём:
3+13+37 = 3+19+31 = 44+19+23 = 44+5+37 = 17+13+23 = 17+5+23 = 53
В квадрате со стороной n таким сумм будет ровно n! Нелегко же, наверное, все их уравнять! Однако Наталии с коллегами удаётся не только находить такие квадраты, а и составлять их только из простых чисел и доказывать минимальность полученных сумм.
Откуда число 11 в расчетах, в квадрате его нет...
ОтветитьУдалитьЭто я так 44 набирал :) Спасибо!
Удалить