суббота, 5 ноября 2011 г.

Средняя скорость

Классическая задача, в которой автобус едет из пункта А в пункт В со скоростью 40к/ч, а возвращается со скоростью 60 км/ч, часто направляет по ложному следу школьника, которому необходимо найти среднюю скорость.

Очевидный шаг - найти среднее арифметическое скоростей "туда" и "обратно", дающий ответ 50 км/ч, является неправильным. И вот почему: двигаясь с меньшей скоростью, автобус затратит большее время на путь, следовательно, эта скорость окажет большее влияние на среднюю. Рассмотрим крайний случай: скорость "туда" равна 100 км/ч, а обратно - 0 км/ч. Среднее арифметическое этих скоростей, опять-таки, 50 км/ч, но в данном случае автобус и вовсе не прибудет в пункт А.

Чтобы правильно решать подобные задачи, необходимо вспомнить определение средней скорости. Средняя скорость является отношением всего пройденного расстояния к общему затраченному времени.

Пусть расстояние между пунктами равно s. Тогда автобус прошёл расстояние, равное 2s. Времени на путь из А в В он затратил s/40 ч, а на обратный - s/60 ч. Общее время составит:

Теперь можно находить среднюю скорость.

Комментариев нет:

Отправить комментарий

Популярные сообщения

Темы

число цифра простые геометрия юмор язык дроби степень делимость пи методы история самоописывающее квадрат система счисления время задача узор корень структура тригонометрия е сайты конструкция формулы игра факториал функции приближение программа фрактал последовательность график комбинаторика память вероятность пределы конкурс логарифм треугольник неизвестное интеграл палиндром уравнение видео комплексные магический квадрат правильно-неправильное действие софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы проценты логика парабола разрезания символ 2014 Фибоначчи клеточный автомат матрица производная статистика фокус головоломка кривая куб шахматы действия иллюзия новости оказывается оригами построение сложение термин тетраэдр