Обычно перед началом нового года я публикую интересные свойства его номера. Однако на этот раз в публикациях блога образовалась пауза, которую пора прекращать.
Простыми делителями числа 2015 являются числа 5, 13 и 31. А число 2016 = 2015+1 делится на 5+1, 13+1 и 31+1.
Числа, обладающие таким свойством, называются числами Лукаса-Кармайкла. Числа Лукаса-Кармайкла должны быть свободными от квадратов, т.е. не должны делиться на квадрат простого числа. В противном случае числом Лукаса-Кармайкла считался бы куб любого простого числа. Если $n=p^3$, то $n+1 = p^3+1 = (p+1)(p^2+p+1)|(p+1)$
Интересные числа, занимательные математические факты и удивительные конструкции. Узнавайте каждый день что-то новое!
Подписаться на:
Комментарии к сообщению (Atom)
Популярные сообщения
-
Если вы хотите проверить, содержится ли ваш телефон, год рождения или номер дома среди уже вычисленных знаков числа пи, воспользуйтесь этой ...
-
Как рассказал наш читатель в комментарии к посту о целочисленном треугольнике , площадь четырёхугольника, вписанного в окружность, вычисляе...
-
Вычислим факториалы нескольких натуральных чисел и отметим точки (1, 1), (2, 2), (3, 6), (4, 24) и т.д.на прямоугольной системе координат...
-
Мы привыкли доверять в расчётах компьютеру. Но иногда - чересчур полагаемся на него. А сейчас я покажу один поучительный пример, позволяющи...
-
Приведённые квадратные уравнения легко решать по теореме Виета. Достаточно найти два числа такие, произведение которых равно свободному член...
-
Способ разложения числа в цепную дробь с помощью калькулятора имеет ограничения точности. Но, оказывается, для квадратных корней существуе...
-
Мантисса - это дробная часть числа. Операция взятия дробной части обозначается фигурными скобками. {5}=0 {4,37}=0,37 По определению, дро...
-
Для числа 12 на математических часах я выбрал одну их наиболее парадоксальных формул, согласно которой сумма всего бесконечного множества на...
-
Стабильно в первую пятёрку самых читаемых постов блога "Десять Букв" входит заметка о правильно-неправильном выносе из-под корня ...
-
Площадь треугольника, зная его стороны, можно найти по формуле Герона. < Где a, b, c - стороны треугольника, а p - полупериметр. Для...
Темы
число
цифра
простые
геометрия
юмор
дроби
язык
степень
делимость
пи
методы
история
квадрат
самоописывающее
время
задача
система счисления
узор
корень
тригонометрия
структура
е
сайты
конструкция
формулы
игра
факториал
функции
приближение
программа
фрактал
комбинаторика
последовательность
график
память
логарифм
вероятность
палиндром
пределы
конкурс
треугольник
магический квадрат
неизвестное
правильно-неправильное действие
видео
интеграл
уравнение
комплексные
софизм
заблуждения
процесс
ряды
цитаты
книги
окружность
прогрессия
среднее
стереометрия
число фи
выражения
графы
матрица
проценты
разрезания
логика
парабола
символ
статистика
2014
Фибоначчи
клеточный автомат
кривая
производная
фокус
головоломка
действия
иллюзия
куб
шахматы
многоугольник
новости
оказывается
оригами
подобие
построение
сложение
термин
тетраэдр
топология
Как только до этих свойств догадаться? Как их находят? :-) Я - с трудом!
ОтветитьУдалитьЯ, честно скажу, набрал 2015 в oeis.org - энциклопедии целочисленных последовательностей. Ну а вообще до того свойства додумались, наверное, задав вопрос: а если число увеличить на 1, в каких случаях увеличатся его делители?
Удалить