суббота, 21 декабря 2013 г.

Разность треугольных чисел

С представлением числа 2014 в виде разности квадратов не получилось. Но может получиться треугольными числами.

Треугольное число описывается формулой $T_n=\frac{n(n+1)}{2}$. Из $T_n$ монет можно выложить треугольник со стороной n.

Итак, пусть число 2014 представляется разностью треугольных чисел:
$T_x-T_y=2014$

$\frac{x(x+1)}{2}-\frac{y(y+1)}{2}=2014$

$x^2+x-y^2-y=4028$

$(x-y)(x+y)+(x-y)=4028$

$(x-y)(x+y+1)=4028$

Здесь число 4028 представляется в виде произведения двух натуральных чисел разной чётности. Это возможно сделать следующими способами:

4028 = 1х4028 = 19х212 = 53x76 = 4x1007

Для каждого из способов будет одно решение уравнения. В итоге имеем:
$2014 = T_{2014}-T_{2013} = T_{115}-T_{96}=T_{64}-T_{117}=T_{505}-T_{509}$

Комментариев нет:

Отправить комментарий

Популярные сообщения

Темы

число цифра простые геометрия юмор язык дроби степень делимость пи методы история самоописывающее квадрат система счисления время задача узор корень структура тригонометрия е сайты конструкция формулы игра факториал функции приближение программа фрактал последовательность график комбинаторика память вероятность пределы конкурс логарифм треугольник неизвестное интеграл палиндром уравнение видео комплексные магический квадрат правильно-неправильное действие софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы проценты логика парабола разрезания символ 2014 Фибоначчи клеточный автомат матрица производная статистика фокус головоломка кривая куб шахматы действия иллюзия новости оказывается оригами построение сложение термин тетраэдр