вторник, 31 января 2017 г.

Очень хорошее приближение числа е

Контантин Кноп в группе Математические задачи и головоломки на FB обратил внимание, что по западным математическим пабликам начала гулять вот такая картинка:

Выражение в скобках, состоящее из десяти цифр, даёт $1,8\cdot10^{25}$ верных знаков для числа е.

Рассмотрим, в чём тут хитрость.

Как известно, число е возникает как второй замечательный предел. Выражение$\left(1+\frac{1}{n}\right)^n$ при n стремящемся к бесконечности, стремися к e.

Выражение в скобках равно сумме единицы и числа $9^{-4^{6\cdot7}} = 9^{-4^{42}}= 9^{-2^{84}}=3^{2\cdot-2^{84}}=3^{-2^{85}}=\frac{1}{3^{2^{85}}}$

А показатель степени за скобками равен как раз $3^{2^{85}}$

То есть это выражение равно $\left(1+\frac{1}{n}\right)^n$ для очень большого n.

Практического смысла в таком приближении мало, ведь, чтобы получить $1,8\cdot10^{25}$ верных знаков для числа е, приходится возводить в степень, которая тоже является числом из $1,8\cdot10^{25}$ цифр.

Но формула красивая, да.

Комментариев нет:

Отправить комментарий

Популярные сообщения