четверг, 3 мая 2012 г.

Дискриминант

Метод решения квадратных уравнений с помощью дискриминанта знают почти все. Но, как мне пришлось убедиться, для многих эта формула: D = b2 - 4ac кажется своего рода заклинанием. И почему для получения корней сначала нужно произвести именно такую операцию с коэффициентами - загадка.

Чтобы понять, откуда взялась формула дискриминанта и почему она работает, попробуем решить квадратное уравнение без неё.

Итак, имеем уравнение ax2 + bx + c = 0, где первый коэффициент не равен нулю.

Для начала разделим обе части на a:


Было б здорово, если бы левую часть удалось свернуть по формуле квадрата суммы. Квадрат первого, x, уже есть. Тогда удвоенным произведением первого на второе должно стать:

Квадрат второго будет равняться


Прибавим его и отнимем от левой части уравнения:

Соберём три слагаемых левой части в квадрат суммы, а оставшиеся два - перенесём вправо:

Приведём правую часть к общему знаменателю:
Вот он! Выражение b2 - 4ac, стоящее в числителе правой части - и есть наш дискриминант. Почему же его знак определяет количество корней? Рассмотрим полученное уравнение внимательнее. Слева стоит квадрат. В знаменателе правой части - тоже квадрат. И только дискриминант может иметь любой знак. Поэтому, если он окажется отрицательным, полученное уравнение корней иметь не будет. Если нулевым - корень будет единственным (кстати, формула нахождения вершины параболы также происходит отсюда). И только для положительного дискриминанта будет 2 различных корня.

Ну а дальше - легко :)

2 комментария:

  1. Для некоторых студентов ещё большим заклинанием является формула: d(ln(x))/dx = 1/x, в то время как для других логарифмов там ещё множитель :) Хотя доказывается тоже легко.

    ОтветитьУдалить
    Ответы
    1. Анонимный15/1/17 19:32

      для меня сама буква d -заклинание

      Удалить

Популярные сообщения

Темы

число цифра простые геометрия юмор дроби язык степень делимость пи методы история квадрат самоописывающее время задача система счисления узор корень тригонометрия структура е сайты конструкция формулы игра факториал функции приближение программа фрактал комбинаторика последовательность график память логарифм вероятность палиндром пределы конкурс треугольник магический квадрат неизвестное правильно-неправильное действие видео интеграл уравнение комплексные софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы матрица проценты разрезания логика парабола символ статистика 2014 Фибоначчи клеточный автомат кривая производная фокус головоломка действия иллюзия куб шахматы многоугольник новости оказывается оригами подобие построение сложение термин тетраэдр топология