четверг, 10 февраля 2011 г.

Числа Мерсенна

Как мы уже писали, простое число 2147483647 равно 231-1. Интересно, что показатель степени двойки также является простым числом и выражается как 31 = 25-1. И число 5, опять-таки, простое.

Числа вида 2p-1, где p - простое, называются числами Мерсенна. Интерес к этой формуле связан с поиском способа получения больших простых чисел.

Комментариев нет:

Отправить комментарий

Популярные сообщения

Темы

число цифра простые геометрия юмор дроби язык степень делимость пи методы история квадрат самоописывающее время задача система счисления узор корень тригонометрия структура е сайты конструкция формулы игра факториал функции приближение программа фрактал комбинаторика последовательность график память логарифм вероятность палиндром пределы конкурс треугольник магический квадрат неизвестное правильно-неправильное действие видео интеграл уравнение комплексные софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы матрица проценты разрезания логика парабола символ статистика 2014 Фибоначчи клеточный автомат кривая производная фокус головоломка действия иллюзия куб шахматы многоугольник новости оказывается оригами подобие построение сложение термин тетраэдр топология