воскресенье, 1 ноября 2015 г.

Практичное число 2016

За пару месяцев доНового Года начнём собирать интересные свойтсва числа 2016.

Вот все 36 делителей числа 2016:
2016 =
1 x 2016
2 x 1008
3 x 672
4 x 504
6 x 336
7 x 288
8 x 252
9 x 224
12 x 168
14 x 144
16 x 126
18 x 112
21 x 96
24 x 84
28 x 72
32 x 63
36 x 56
42 x 48

Оказывается, любое число, меньшее 2016, может быть представлено в виде суммы некоторых его делителей. Числа с таким свойством называются практичными. Предыдущим практичным номером года был 2010.

Немного подумав, приходим к выводу, что складывая делители практичного числа n можно получить любое число от 1 до 2n-1. А для числа 2016 можно пойти ещё дальше. К примеру:

4032 = 2016+1008+672+336
4033 = 2016+1008+672+336+1
4034 = 2016+1008+672+336+2
4035 = 2016+1008+672+336+3
....
Вопрос нашим читателям: как далеко мы сможем зайти?

Комментариев нет:

Отправить комментарий

Популярные сообщения

Темы

число цифра простые геометрия юмор язык дроби степень делимость пи методы история самоописывающее квадрат система счисления время задача узор корень структура тригонометрия е сайты конструкция формулы игра факториал функции приближение программа фрактал последовательность график комбинаторика память вероятность пределы конкурс логарифм треугольник неизвестное интеграл магический квадрат палиндром уравнение видео комплексные правильно-неправильное действие софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы проценты логика парабола разрезания символ 2014 Фибоначчи клеточный автомат матрица производная статистика фокус головоломка кривая куб шахматы действия иллюзия новости оказывается оригами построение сложение термин тетраэдр