среда, 10 ноября 2010 г.

Эвклидово доказательство бесконечности количества простых чисел

Допустим, простых чисел конечное количество. Но тогда, если их все перемножить, и прибавить единицу, получим число, которое не делится ни на одно из простых.

Вот на этом шаге часто, воспроизводя доказательство Эвклида, делают ошибку и говорят, что полученное число само является простым. Однако это не так: оно может быть или простым, или делящимся на некоторое простое число, большее максимального простого, входящего в произведение.

Действительно, числа
2+1=3
2*3+1=7
2*3*5+1=31
2*3*5*7+1=211
2*3*5*7*11+1=2311
- все простые, однако следующее:
2*3*5*7*11*13+1=30031 - составное, оно делится на 59.

Об этом математическом заблуждении, прочитав заметку о сумме иррациональных чисел, напомнил мне mmmkot.

Доказательство Эвклида очень хорошо иллюстрирует также принцип доказательства от противного: сначала мы предполагаем, что нечто верно, а затем показываем, к какому противоречию. приводит данное допущение.

Комментариев нет:

Отправить комментарий

Популярные сообщения

Темы

число цифра простые геометрия юмор дроби язык степень делимость пи методы история квадрат самоописывающее время задача система счисления узор корень тригонометрия структура е сайты конструкция формулы игра факториал функции приближение программа фрактал комбинаторика последовательность график память логарифм вероятность палиндром пределы конкурс треугольник магический квадрат неизвестное правильно-неправильное действие видео интеграл уравнение комплексные софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы матрица проценты разрезания логика парабола символ статистика 2014 Фибоначчи клеточный автомат кривая производная фокус головоломка действия иллюзия куб шахматы многоугольник новости оказывается оригами подобие построение сложение термин тетраэдр топология