понедельник, 31 октября 2011 г.

Облако слов

Интересный сервис wordle.net может провести частотный анализ текстов на веб-странице и представить результаты в виде симпатичного облака слов. 
Вот какой результат выдала эта система о "Десяти буквах":

Увеличив число отображаемых постов на странице я дал ссылку на блог другой системе: WordCloud

Она выдала следующее:
Здесь в облако попали также фрагменты html-кода страницы

пятница, 28 октября 2011 г.

ЗЫ

Когда я, лет 8 назад, получил регулярный доступ в интернет и начал общаться на форумах (в основном, на форуме по Цивилизации), многие слова и выражения были непонятны. Среди них было и буквосочетание "ЗЫ". Взглянув на клавиатуру я догадался, что так в рунете часто обозначают постскриптум.

А сейчас узнал интересный факт: в кабардино-черкесском языке слово зы обозначает числительное 1.

суббота, 22 октября 2011 г.

Выпуклый и невыпуклый многогранники

Иногда из одинакового набора граней можно собрать различные многогранники: как выпуклый, так и невыпуклый. Объём какого из них в этом случае будет больше? Интуитивно кажется, что выпуклого, однако это не всегда так. Ролик с Этюдов демонстрирует, что в некоторых случаях невыпуклый многогранник будет иметь больший объём.



Для приведённого в видео примере отношение объёмов составляет 1,163... Каким же является максимально возможное отношение объёмов невыпуклого и выпуклого многогранников, составленных из одних и тех же граней, до сих пор неизвестно.

вторник, 18 октября 2011 г.

Десятибуквенное числительное

Когда-то я составлял список числительных из различных языков, количество букв в которых равно их значению. Это удалось сделать для чисел от 1 до 18, кроме десятки.

И вот сегодня Ali обнаружил слово Mahtlāctli, которое в ацтекском языке науатль обозначает число 10 

четверг, 13 октября 2011 г.

Смена системы счисления: прогресс

В задаче о поиска чисел, которые в q-ичной системе счисления записывалось бы как p, а в p-ичной - как q продвигается с помощью наших читателей.

Вадим заметил, что любое число, записываемое как n в десятичной системе счисления выглядит как 10 в системе по основанию n. 

А Николай нашёл принципиально отличный пример: запись "65" в 87-ричной системе счисления означает 6 * 87 + 5 = 527. То же самое означает и запись "87" в 65-ричной системе: 8 * 65 + 7 = 527.


Задачу поиска не более чем двузначных p и q можно записать так: Пусть p состоит из цифр a и b, а q - из цифр c и d.
Тогда запись (ab)cd означает число a*cd+b=10ac+ad+b.
А запись (cd)ab означает число c*ab+d=10ac+bc+d. (Запись ab означает не произведение, а число с цифрами a и b).


Тогда получаем уравнение
ad + b = bc + d
Откуда
(a - 1)d = (c - 1)b


Получаем ещё одну группу решений: если оба числа начинаются на 1. К примеру, запись "15" в 19-ричной системе означает число 15+9=24. То же самое будет означать и запись "19" в 15-ричной системе.


Если же d=c-1, а b=a-1 (как в числах 87 и 65) - тоже равенство выполнится.

понедельник, 10 октября 2011 г.

Прогрессия в дате

Вчера,  девятого октября, дважды наступал момент, когда время вместе с датой формировало арифметическую прогрессию.

Это случалось 06:07:08 09.10.11 и 09.10.11 12:13:14

Почему же я не написал об этом вчера? Потому что у меня опять новый игровой проект, которым, надеюсь, скоро с вами поделюсь.

вторник, 4 октября 2011 г.

Вращение гиперкуба

Если последовательно рассмотреть точку, отрезок, квадрат и куб, можно заметить, что каждый следующий объект получается из предыдущего дублированием и параллельным и переносом копии вдоль нового измерения. Траектории переноса каждого их элемента формирует элемент более высокой размерности. Например, 4 стороны квадрата, двигаясь, создают боковые грани куба.

Так же и куб можно сдвинуть вдоль четвёртого измерения и образуется гиперкуб. И так же, как проекцию куба можно изобразить на бумаге (двумерном объекте), четырёхмерный гиперкуб можно проецировать в пространство.

Как это выглядит, показано на видео. Смотрите его так же, как стереокартинки: глаза должны сфокусироваться на некоторой точке перед экраном, чтобы оба изображения совместились.


понедельник, 3 октября 2011 г.

Вырезать одним разрезом

На листе бумаги нарисован многоугольник (не обязательно выпуклый). Можно ли так согнуть лист, чтобы этот многоугольник можно было бы вырезать одним разрезом?

Оказывается, всегда ответ - да. Вот ролик иллюстрирующий пару примеров.



Для фигуры, показанной в его заставке схема сгибов будет следующей:
сгибание и разрезание бумаги

В общем виде последовательность действий для определения необходимых сгибов состоит из трёх шагов:
1. Построить прямолинейный скелет многоугольника. Как он строится иллюстрирует эта анимированная схема:
сгибание и разрезание бумаги
Все стороны многоугольника мы уменьшаем так, чтобы они оставались параллельны исходным положениям и все расстояния между сторонами и их начальными положениями были равными. В процессе сжатия многоугольник может разбиться на несколько областей - продолжаем уменьшение для них.

Траектории, описанные его вершинами, и будут прямолинейным скелетом.

2. Из узлов скелета опускаем перпендикуляры на те стороны, стяжкой которых эти вершины образовались.
опускаем перпендикуляры

3.Определение направлений сгиба (вверх или вниз)
Определение направлений сгиба
Как видите, направление меняется как только линия пересекает границу многоугольника.

Согнув лист по этой схеме, многоугольник можно будет вырезать одним разрезом.

воскресенье, 2 октября 2011 г.

Трёхмерное множество Мандельброта

Вот какую удивительную структуру удалось получить Тому Лову в 2010 году, применив формулы преобразований для трёхмерного пространства, аналогичные тем, на основе которых строится озеро Мандельброта.



суббота, 1 октября 2011 г.

Прогноз Томаса Мальтуса

В конце XVIII века английским учёным Томасом Мальтусом было выведено 2 принципа:
- население растёт в геометрической прогрессии
- ресурсы растут в арифметической прогрессии.

Поэтому рано или поздно имеющихся ресурсов не будет хватать для обеспечения потребностей растущего населения.

Популярные сообщения

Темы

число цифра простые геометрия юмор язык дроби степень делимость пи методы история самоописывающее квадрат система счисления время задача узор корень структура тригонометрия е сайты конструкция формулы игра факториал функции приближение программа фрактал последовательность график комбинаторика память вероятность пределы конкурс логарифм треугольник неизвестное интеграл палиндром уравнение видео комплексные магический квадрат правильно-неправильное действие софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы проценты логика парабола разрезания символ 2014 Фибоначчи клеточный автомат матрица производная статистика фокус головоломка кривая куб шахматы действия иллюзия новости оказывается оригами построение сложение термин тетраэдр