воскресенье, 21 июня 2015 г.

Скалярное произведение векторов

Векторы можно складывать, вычитать, умножать на число. А перемножать векторы между собой можно даже двумя способами: скалярно и векторно.

Результатом скалярного произведения является число, а порядок множителей неважен. Результатом же векторного произведения является вектор, напрваление которого зависит от того, в каком порядке перемножались сомножители.

Скалярное произведение обозначается точкой, а векторное - крестиком.

Скалярное произведение вычисляется просто: нужно попарно перемножить соответстсвующие координаты векторов, а результаты сложить.

Таким образом, на математических часах запись $\overline{(2,5)}\cdot\overline{(3,1)}$ обозначает $2\cdot 3+5\cdot 1=11$

Геометрически скалярное произвдение вектора равно произведению длин векторов на косинус угла между ними.

суббота, 20 июня 2015 г.

Вычисление количества сочетаний

Число 10 на математических часах представляется как
$10=C_5^2$

Эта запись означает количество сочетаний из 5 элементов по 2. Иными словами, сколькими способами можно выбрать из пяти различных предметов неупорядоченную пару

Искомое число можно подсчитать непосредственно. Из (1,2,3,4,5) можно выбрать такие пары (не забываем, что порядок в них неважен):

(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)
Всего их 10.

Как же вычислять $C_n^m$ не прибегая к непосредственному перечислению? Первый предмет можно выбрать n способами. Второй предмет можно выбрать (n-1) способами. Для третьего будет (n-2) способов, и т.д. до (n-m+1) способов выбрать m-й предмет.

Значит, количество способов выбрать m предметов из n при условии, что порядок важен, равно произведению $n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1)$.

Сами же эти m предметов можно переставить между собой m! способами. Значит, каждая непорядоченная группа из m предметов при нашем подсчёте оказалась подсчитанной m! раз.

Поэтому $C_n^m$ оказывается равно дроби: $\frac{n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1)}{m!}$

Эту формулу можно упростить, заметив, что $n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1) = \frac{n!}{(n-m)!}$

Таким образом, $C_n^m = \frac{n!}{m!(n-m)!}$

пятница, 19 июня 2015 г.

Вычисление предела

Как-то резко я прекратил публиковать объяснение формул со своих математических часов. Продолжаем!

Число 9 выражается как предел $\lim_{x \rightarrow \infty} \frac{(3x+1)(3x+2)}{(x+3)(x-2)}$

Предел этот представляет собой неопределённость вида бесконечность на бесконечность. При этом в числителе и знаменателе предела - многочлены.

$\lim_{x \rightarrow \infty} \frac{9x^2+9x+2}{x^2+x-6}$

Так как эти многочлены одинаковых степеней, предел будет равен отношению их старших коэффициентов. Для доказательства этого факта разделим числитель и знаменатель на $x^2$:

$\lim_{x \rightarrow \infty} \frac{\frac{9x^2+9x+2}{x^2}}{\frac{x^2+x-6}{x^2}} = \lim_{x \rightarrow \infty} \frac{\frac{9x^2}{x^2}+\frac{9x}{x^2}+\frac{2}{x^2}}{\frac{x^2}{x^2}+\frac{x}{x^2}-\frac{6}{x^2}} = \lim_{x \rightarrow \infty} \frac{9+\frac{9}{x}+\frac{2}{x^2}}{1+\frac{1}{x}-\frac{6}{x^2}}$

Поскольку х стремится к бесконечности, то все слагаемые числителя и знаменателя, кроме первых, стремятся к нулю и можно вычислить предел.

$\lim_{x \rightarrow \infty} \frac{9+\frac{9}{x}+\frac{2}{x^2}}{1+\frac{1}{x}-\frac{6}{x^2}} = \frac{9+0+0}{1+0+0}=9$

Вот, кстати, как выглядит график этой функции:

Прямая у=9 является егго горизонтальной асимптотой.

четверг, 11 июня 2015 г.

Популярные сообщения

Темы

число цифра простые геометрия юмор язык дроби степень делимость пи методы история самоописывающее квадрат система счисления время узор задача корень структура тригонометрия е конструкция сайты формулы игра факториал функции приближение программа фрактал последовательность график комбинаторика память вероятность пределы конкурс логарифм треугольник неизвестное интеграл уравнение видео комплексные магический квадрат палиндром правильно-неправильное действие софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы проценты логика парабола разрезания символ 2014 Фибоначчи клеточный автомат матрица производная статистика фокус головоломка кривая куб шахматы действия иллюзия новости оказывается оригами построение сложение термин тетраэдр