воскресенье, 21 июня 2015 г.

Скалярное произведение векторов

Векторы можно складывать, вычитать, умножать на число. А перемножать векторы между собой можно даже двумя способами: скалярно и векторно.

Результатом скалярного произведения является число, а порядок множителей неважен. Результатом же векторного произведения является вектор, напрваление которого зависит от того, в каком порядке перемножались сомножители.

Скалярное произведение обозначается точкой, а векторное - крестиком.

Скалярное произведение вычисляется просто: нужно попарно перемножить соответстсвующие координаты векторов, а результаты сложить.

Таким образом, на математических часах запись $\overline{(2,5)}\cdot\overline{(3,1)}$ обозначает $2\cdot 3+5\cdot 1=11$

Геометрически скалярное произвдение вектора равно произведению длин векторов на косинус угла между ними.

суббота, 20 июня 2015 г.

Вычисление количества сочетаний

Число 10 на математических часах представляется как
$10=C_5^2$

Эта запись означает количество сочетаний из 5 элементов по 2. Иными словами, сколькими способами можно выбрать из пяти различных предметов неупорядоченную пару

Искомое число можно подсчитать непосредственно. Из (1,2,3,4,5) можно выбрать такие пары (не забываем, что порядок в них неважен):

(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)
Всего их 10.

Как же вычислять $C_n^m$ не прибегая к непосредственному перечислению? Первый предмет можно выбрать n способами. Второй предмет можно выбрать (n-1) способами. Для третьего будет (n-2) способов, и т.д. до (n-m+1) способов выбрать m-й предмет.

Значит, количество способов выбрать m предметов из n при условии, что порядок важен, равно произведению $n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1)$.

Сами же эти m предметов можно переставить между собой m! способами. Значит, каждая непорядоченная группа из m предметов при нашем подсчёте оказалась подсчитанной m! раз.

Поэтому $C_n^m$ оказывается равно дроби: $\frac{n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1)}{m!}$

Эту формулу можно упростить, заметив, что $n\cdot(n-1)\cdot(n-2)\cdot\dots\cdot(n-m+1) = \frac{n!}{(n-m)!}$

Таким образом, $C_n^m = \frac{n!}{m!(n-m)!}$

пятница, 19 июня 2015 г.

Вычисление предела

Как-то резко я прекратил публиковать объяснение формул со своих математических часов. Продолжаем!

Число 9 выражается как предел $\lim_{x \rightarrow \infty} \frac{(3x+1)(3x+2)}{(x+3)(x-2)}$

Предел этот представляет собой неопределённость вида бесконечность на бесконечность. При этом в числителе и знаменателе предела - многочлены.

$\lim_{x \rightarrow \infty} \frac{9x^2+9x+2}{x^2+x-6}$

Так как эти многочлены одинаковых степеней, предел будет равен отношению их старших коэффициентов. Для доказательства этого факта разделим числитель и знаменатель на $x^2$:

$\lim_{x \rightarrow \infty} \frac{\frac{9x^2+9x+2}{x^2}}{\frac{x^2+x-6}{x^2}} = \lim_{x \rightarrow \infty} \frac{\frac{9x^2}{x^2}+\frac{9x}{x^2}+\frac{2}{x^2}}{\frac{x^2}{x^2}+\frac{x}{x^2}-\frac{6}{x^2}} = \lim_{x \rightarrow \infty} \frac{9+\frac{9}{x}+\frac{2}{x^2}}{1+\frac{1}{x}-\frac{6}{x^2}}$

Поскольку х стремится к бесконечности, то все слагаемые числителя и знаменателя, кроме первых, стремятся к нулю и можно вычислить предел.

$\lim_{x \rightarrow \infty} \frac{9+\frac{9}{x}+\frac{2}{x^2}}{1+\frac{1}{x}-\frac{6}{x^2}} = \frac{9+0+0}{1+0+0}=9$

Вот, кстати, как выглядит график этой функции:

Прямая у=9 является егго горизонтальной асимптотой.

четверг, 11 июня 2015 г.

Популярные сообщения