понедельник, 17 июня 2013 г.

Задача на миллион долларов

В 1993 году техасский математик-любитель и миллиардер по совместительству, Эндрю Бил, предложил приз в 100 тысяч долларов за решение одной задачки из теории чисел.

Доказать, что если мы возьмём три натуральных числа А, В, С, возведём их в натуральные степени x, y, z, большие двух, и будет выполняться равенство:

$A^x+B^y=C^z$,

то у чисел А, В, С обязательно найдётся общий простой множитель.

Вот, например:
$27^4+162^3=9^7$

Здесь все числа, возводимые в степень, делятся на 3 (и даже на 9).

Приз можно получить и если найдёте контрпример: подобное равенство, в котором основания степеней не имели бы общего множителя, большего единицы.

За 20 лет исследований разобрано достаточно много частный случаев, однако обощения пока не найдено, поэтому приз вырос до одного миллион долларов.

Дерзайте!

Популярные сообщения

Темы

число цифра простые геометрия юмор язык дроби степень делимость пи методы история самоописывающее квадрат система счисления время задача узор корень структура тригонометрия е сайты конструкция формулы игра факториал функции приближение программа фрактал последовательность график комбинаторика память вероятность пределы конкурс логарифм треугольник неизвестное интеграл магический квадрат палиндром уравнение видео комплексные правильно-неправильное действие софизм заблуждения процесс ряды цитаты книги окружность прогрессия среднее стереометрия число фи выражения графы проценты логика парабола разрезания символ 2014 Фибоначчи клеточный автомат матрица производная статистика фокус головоломка кривая куб шахматы действия иллюзия новости оказывается оригами построение сложение термин тетраэдр